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Abstract 

Reasonable assumptions about the statistical properties 
of errors in an atomic model lead to the probability 
distributions for the values of structure-factor phases. 
These distributions contain some generally unknown 
parameters reflecting how large the model errors are. 
These parameters must be determined properly to give 
realistic estimates of phase errors. Maximum-likelihood- 
based estimates suggested by Lunin & Urzhumtsev [Acta 
Cryst. (1984), A40, 269-277] are good for models not 
subjected to refinement but underestimate the errors 
when being used for ref'med models. The R-free 
methodology of Brianger [Nature (London), (1992), 
355,472-474] applied to the likelihood-function calcula- 
tion allows realistic phase-error estimates to be obtained 
for both unrefined and refined models. These estimates 
may be used as an additional indicator in the refinement 
process. 

0. Introduction 

It is common practice to use preliminary atomic models 
to estimate structure-factor phases at different stages of 
structure determination. Such models may be incomplete, 
contain positional errors or even consist of pseudo-atoms 
possessing no structural meaning but just reflecting the 
electron-density distribution in the studied object 
(Agarwal & Isaacs, 1977; Lunin et al., 1985; Subbiah, 
1991; Lamzin & Wilson, 1993; Wilson & Agard, 1993; 
Lunin et al., 1995). To combine the phase values 
calculated from such models with those obtained by 
other methods or to use them to construct Fourier 
syntheses, it is necessary to have realistic estimates of 
phase quality. 

Some additional hypotheses about the statistical nature 
of coordinate errors, missing atoms etc. allow one to 
obtain information about unknown phases in the form of 
probability distributions, e.g. (for acentric reflections) 

POPs) _'2 exp[(2as/l~s)F°bSF m°d cos(tps - tpm°d)]. (1) 

Here, F °bs and F m°a are experimentally observed and 
calculated from the model structure-factor moduli and 
t~s °a are calculated from the model phases. Parameters 
and/5 reflect the level of errors in the model and define 
the expected phase errors. They may be calculated 

provided distributions of errors are known, but in 
practical cases they are unknown parameters. The 
determination of appropriate values for these parameters 
is the key step when estimating the phase errors. Some 
methods of estimating these values were compared by 
Read (1986). 

The main idea when estimating the level of model 
errors is to compare the structure-factor moduli calcu- 
lated from the model with the experimentally observed 
ones. To put this idea into more definite shape, a widely 
used statistical method of likelihood maximization (Cox 
& Hinkley, 1974) was applied to estimate the parameters 
in the distributions (1) (Lunin, 1982; Lunin & 
Urzhumtsev, 1984; Read, 1986). Some other applications 
of maximum-likelihood methods in crystallography were 
discussed by Bricogne (1988, 1990). Testing of the 
method for known structures with independent random 
positional errors has shown that in these cases the 
method provides adequate estimates of phase errors, but 
being applied to atomic models subjected to refinement it 
has a tendency to predict much smaller phase errors than 
they really are. 

Similar difficulties that arise when the usual crystal- 
lographic R-factor criterion is applied to structure-factor 
moduli calculated from refined atomic models were 
overcome by Brtinger (1992, 1993) within the framework 
of the R-free methodology. In this approach, some 
structure factors are excluded from the refinement 
process and only these excluded reflections are used to 
calculate some control criterion value (e.g. R factor). 

In the present paper, we discuss a way to combine 
these two ideas, namely maximum-likelihood estimates 
of phase errors and the R-free methodology in order to 
obtain realistic values for the expected phase errors for 
both models with independent positional errors and those 
subjected to refinement. 

1. Likelihood-based estimates (LB estimates) for 
phase errors 

1.1. Statistical modeling of phase errors 

To obtain probabilities of different phase values, we 
must consider the structure involved not as the unique 
fixed one but as an element of an ensemble of possible 
structures with defined probabilities for each structure to 
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occur. In this paper, we suppose that we have a 
model consisting of M atoms in the positions 

rmod/M j Jj=l and possessing the temperature parameters 
Inmod / M t j Ij=l- We consider as possible structures the ones 
consisting of: 

(a) M atoms whose positions and temperature param- 
eters are rj = r~ n°d + A r j ,  Bj = B~ °d + ABj, where A r j  
and ABj are independent random errors; we suppose here 
that all At) possess the same radially symmetric 
probability distribution and all ,4Bj have similar prob- 
ability distributions too; 

(b) m = N - M atoms additionally, which are absent 
in the model and whose positions are supposed to be 
independently and uniformly distributed in the unit cell; 
the temperature factors of these atoms are also supposed 
to be independent random variables. 

Under these assumptions, the moduli and phases of 
structure factors become random variables and we may 
speak about the joint probability distribution P(F, go) of 
the modulus and phase for every particular structure 
factor. 

The central limit theorem of the theory of probabilities 
allows one to calculate for the distribution of a sum of N 
independent random variables the main term in its 
expansion into powers of N -I/2. As in other papers 
(Luzzati, 1952; Sim, 1959; Srinivasan & Parthasarathy, 
1976; Bricogne, 1984; Read, 1990), it is possible to show 
in the case considered that 

P(F, qg) = (F/rre/3) exp{- [F  2 + Ot2(Fm°d) 2 

- 2c¢F F m°d cos(g0 - gom°d)]/e/3} 
(2) 

for acentric structure factors and 

P(F, S) = (27re/3) -1/2 exp{- [F  2 + Ot2(Fm°d) 2 

- 2ofF Fm°ds]/2efl} (3) 

for centric ones, where S = cos(go - gomod) and takes for 
centric reflections values 1 o r - 1  only. 

Parameters ct and/3 depend on the reciprocal-vector s 
value and reflect the model quality. They are defined as 

c~ = (cos(2n's, Ar))Ar(exp(--AB sZ/4))AB, 
M 

/3 = Y~fj2(s) exp(--B~°ds2 /2)[ (exp( - AB s2/2)),as -- ct2] 
j=l 

N 
+ ~ fj2(s)(exp(--Bjs2/2))Bj. (4) 

j=M+I 

Here, fj(s) are atomic scattering factors and multipliers 
e(s) compensate different mean intensities for different 
types of reflections (they are equal to the number of 
transposed symmetry matrixes that leave the reciprocal 
vector s unchanged). 

Owing to radical symmetry of the coordinate error, 
probability distribution parameters t~ and/3 depend on the 
s = Isl values only and, for a ' thin'  spherical layer in the 

reciprocal space, we can think of parameters ct and/J  as 
the same for all reflections. It is worth noting that all the 
uncertainties in the coordinate- and temperature- 
parameter errors and the model incompleteness have 
accumulated in the two parameters ct and/3. Furthermore, 
if we suppose that the observed F TM values are present 
on a relative scale, this will only change the values of ct 
and/3 parameters, which will contain one more unknown 
factor, namely the scale factor. So, we do not suppose 
below that F TM values are reduced to the absolute scale 
and consider the problem of defining the scale coefficient 
as part of the more general problem of the determination 
of the unknown parameters a and ft. 

The joint probability distribution (2) allows one to 
obtain the conditional probability distribution for the 
structure-factor phase go assuming that the modulus value 
F has the experimentally obtained value F °bs. 

e(goIF = F TM) 

= {2rtlo[2(ot/e/3)F°bSFm°d]} -I 

× exp{2(ot/efl)F°bSF m°a cos(go - gomoa)}. (5) 

This distribution allows one to obtain the usual best 
phase, gob~st = gomod, and the figure of merit 

m = (cos(go - gomod)) 

= ll[2(Ot/E/3)f°bsfm°d]/lo[2(Ol/E/3)F°bSFm°d], (6)  

or estimate the absolute phase error by its expected value 

71" 
(Igo --  gomod[) = f goexp{2(ct/efl)FobsFmod cos(go)} dgo 

0 

x {rclo[2(ot/efl)F°bSFm°d]} -1 . (7) 

For centric reflections, the last three formulae take the 
form 

P(SIF = F TM) = {2 cosh[(~/efl)F°bSFm°d]} -l 

x exp{(oe/efl)F°bSFm°ds} (8) 

m = tanh[(ot/efl)F°bSFm°d], (9) 

(Igo - gom°dl) = {(2/rc)exp[(ot/efl)F°bSF m°d] 

× cosh[(ot/efl)F°bSFm°d]}-l. (10) 

The main problem in applying these formulae is to find 
values of a and fl parameters that reflect adequately the 
errors in the model. We discuss below a way to obtain 
these values. 

1.2. Maximum-likelihood estimates for  distribution 
parameters 

Consider now reflections from some 'thin'  spherical 
layer in the reciprocal space [parameters c~ and/5 in (2) 
and (3) are the same for all such reflections]. The joint 
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probability distributions allow one to obtain marginal 
probability distributions of modulus values by integrating 
(2) or (3) with respect to unknown phases: 

P(F)  = ( 2 F / e / 3 ) e x p { - [ F  2 + Ot2(Fm°d)2]/t;/3} 

x lo[2(et/e/3)F F m°d ] ( 11 ) 

or 

P(F) = (2/Ire/3) 1/2 e x p { - [ F  2 + o~2(Fm°d)2]/2g/3} 

x cosh[(ot/e/3)F Fm°d]. (12) 

These distributions contain the same unknown param- 
eters o~ and /3 as (5) and (8) do. Let us consider 
experimental modulus values (F~ xp) as realizations of the 
random variables F s distributed in accordance with (11) 
or (12) and try to find parameter values that are 
consistent with these realizations. 

The maximum-likelihood method suggests as esti- 
mates for values of unknown distribution parameters 
those that maximize 'the probability' of getting for the 
set of moduli {F s } the actually obtained values {F~ xp }. To 
be more precise, let the joint probability distribution 
Pjoint({Fs}; o~,/3) for a set {Fs} of moduli depend on some 
unknown parameters o~ and /3. Then, the maximum- 
likelihood estimates are those maximizing the likelihood 
function 

L(ot,/3) = Pjoint({FseXP}; o~,/3) (13) 

or, equivalently, its logarithm. Suppose that moduli {Fs} 
for different structure factors are mutually independent 
[or, which leads to the same result, using the 'diagonal 
approximation' (Bricogne, 1993) for their joint prob- 
ability distribution], we get the logarithm of the 
likelihood function in the form 

lnL(a,/3) = ~ ln{(2FJes/3) 
s 

× exp{--[(F°bs) z + ofl(Fsm°d)2]/e~} 

x lo[2(otles/3)F°bSFm~]} 

+ ~ ln{(2/a'es/3) I/2 
s 

x exp{--[(F°bs) 2 + ot2(Fm~)Z]/2es/3} 

x cosh[(ot/E~/3)F°bSFm°d]}, (14) 

where the first sum is extended over acentric reflections 
and the second over centric ones. 

Details of the method used for maximization of this 
function are discussed in Appendix A. We note here only 
that there may be two different cases depending on the 
value of I2 defined below [see (34)], which may be 
considered as the covariance value between the weighted 
observed and the model intensities. If 12 < 0, the 
maximum of L(ot,/3) is attained at point a = 0, /3 = B 
and (6) and (9) give zero figures of merit for all the ~ 
phases in the considered reciprocal-space layer, i.e. the 

present model does not produce information about the 
phases of reflections of this layer. If ,.(2 > 0, there exist 
some nontrivial optimal values for ot and/3 and phases 
¢p~s °d have nonzero figures of merit. It should be 
mentioned, too, that parameters a and /5 for different 
layers in the reciprocal space are different and must be 
determined separately for every zone in s 2. 

Below we call the likelihood-based (LB) estimates for 
phase errors the estimates that follow from distributions 
(5) and (8) with parameters a and /3 determined from 
maximization of the likelihood function (14). 

1.3. Testing of methods for prediction of the level of the 
phase errors 

After the parameters o~ and 13 defining distribution (5) 
or (8) for a particular reflection have been found, we can 
calculate the expected phase difference between the true 
phase and the model one. In a test case, when the exact 
phases (e.g. ones calculated from the refined model) are 
known, we also know the real phase differences 
¢pex ~omod. We cannot compare these values immedi- 
ately to judge how well the parameters c~ and /5 were 
estimated since the phase error is of a statistical nature 
and its unique value is usually not representative. The 
more reliable figure is the value of some statistic, e.g. 
averaged phase error for a large group of reflections. In 
this case, the standard deviation for its value decreases as 
the inverse square root of the reflection number, therefore 
for well defined a and/5 values the averaged expected 
error must not differ greatly from the averaged difference 
between ¢p~x and ephod phases. 

Following the above reasoning in subsequent experi- 
ments with the phase-error-level prediction, we divided 
the interval in s 2 values into 20 equal bins. For every bin, 
the averaged value of expected phase errors 

mk 
Tk pred -- (1/mk) ~-] (IcPsj - ¢p~j°d l) (15) 

j = l  

was calculated and compared with the averaged value of 
the real phase differences between the exact phases and 
the model ones: 

mk 

T~ eal "- (1/mk) ~ I~osj od e x -  q~sj I. (16) 
j = l  

Here, k is the bin number; {sj}7=* ! are reciprocal-lattice 
points of the corresponding layer; the expected values ( ) 
in (15) are calculated in accordance with (7) and (10). 

2. Comparison of the LB-estimated and real phase 
errors 

2.1. Preliminary remarks 

The tests presented in this paper were performed with 
the protein G structure. This protein was crystallized 
in space group P21212 ~ with unit-cell dimensions 
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34.9 x 4 0 . 3  x 4 2 . 2 A .  The experimental moduli of 
resolution up to 1.8 .~ and the atomic model containing 
564 non-H atoms and 96 water O atoms were kindly 
supplied for test purposes by E. Dodson. We refer to this 
model below as the PDB model. 

When testing the developed methods with models 
subjected to refinement, the refinements were aimed at 
checking the closeness of predicted and real errors in 
different circumstances rather than at getting an ideal 
model and were interrupted at intermediate stages. 

In the first set of tests, the moduli of the structure 
factors calculated from the PDB model were considered 
as 'observed' ones. Water molecules were not included 
in these calculations. 

2.2. Independent coordinate errors 

Fig. 1 shows the quality of phase-error-level prediction 
by the distributions (5) and (8) with maximum-like- 
lihood-determined parameters in the cases when inde- 
pendent random shifts were introduced into the model 
coordinates. These shifts had a Gaussian distribution 
with zero mean value and the equal variances varied for 
different tests. Two starting models were tested with the 
mean absolute values of coordinate errors of 0.39 and 
0.79 A,, respectively. In both cases, predicted errors were 
very close to the real ones. 

2.3. Refined atomic models 

At the next stage of the experiments, the model with 
0.79,~ starting mean coordinate error was subjected to 
reciprocal-space refinement with the use of the FROG 
refinement program (Urzhumtsev, Lunin & Vernoslova, 
1989). The ref'mement consisted of four steps with the 
upper limits of resolution zones (in s 2 values) of 0.093, 
0.185, 0.247, 0.309,~ -2, respectively. Three cycles of 
steepest-descent minimization were made for every zone. 
Geometrical constraints were not used in this refinement; 
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Fig. 1. The averaged values of the LB-estimated (K) and real ( -O- )  
phase errors for atomic models with independent coordinate shifts. 
The curves are marked by the mean absolute value of the model 
coordinate shifts. 

however, the stereochemical quality of the model was 
improved during the refinement. The final value of the R 
factor was 0.217 (in the resolution zone up to 1.8 A) and 
the mean coordinate error was reduced to 0.55 ,~. Fig. 2 
shows the changing of the real and predicted errors with 
the extension of the resolution zone. 

It follows from these tests that, for the models 
subjected to refinement, LB estimates of phase errors 
are valid for reflections of the resolution zones not 
included into the ret-mement but are substantially less 
than real errors for reflections used in the refinement 
process. 

3. R-free LB estimates 

A picture similar in appearance was obtained by Briinger 
(1992) in his studies of the correlation of R factors with 
the real model quality. He demonstrated that, if all the 
reflections are used in the refinement, then the R factor 
does not reflect adequately the model quality but can be 
rather small for incorrect models. He has also shown that 
the situation changes drastically if some set of reflections 
(we call it the control group) is excluded from the 
ret-mement and the R factor is calculated for reflections of 
this control group only. This R-factor value (called by the 
author the R-free factor) reflects the model quality better 
than the ordinary one. In our tests presented above, 
reflections of higher-resolution zones not included in the 
refinement process at the intermediated stages may be 
considered as such a control group. The test results show 
that ~ and/3 values determined from the these reflections 
provide us with realistic estimates of phase errors. The 
extension of this observation is an attempt to exclude 
from the refmement a number of reflections distributed 
evenly in the reciprocal space and use these reflections 
only to estimate a and 13 parameters. 

We call below the R-free LB estimates of phase errors 
those obtained from the distributions (5) and (8) with c~ 
and 15 parameters, which were obtained by maximization 
of the likelihood function (14) extended over reflections 
that were not included in the reffmement. 

4. Comparison of the R-free LB-estimated and real 
phase errors 

4.1. Simulated data 

In this series of tests, the moduli calculated from the 
PDB model without water molecules were considered as 
observed ones. Fig. 3 shows the results of the use of the 
R-free LB estimates for refined models. The model with 
mean coordinate error 0.79 ,~ was taken as the starting 
model and then subjected to four steps of refinement in 
the resolution zones defined above in §2.3. A randomly 
chosen half of the reflections was used in the refinement 
process and the other half was used as the control group 
to estimate ot and t5 parameters in the distributions (5) 
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and (8). It should be noted that as many as 50% of the 
reflections were included in the control group to make 
the results more clear-cut. We also show below a result 
of  the use of  a smaller control group. Two strategies of  
refinement were tried. At the first attempt, geometrical 
restraints were not applied to the model. A relatively 
small number of reflections used resulted in a failed 
refinement. The final model had an R factor of  0.176 for 
reflections included in the refinement but almost 
unimproved mean coordinate error, which was equal 
to 0.72 A. The mean phase errors calculated from the 
final model were the same as the starting ones and this 
was reflected adequately by their R-free LB estimates. In 
the second run, the geometrical restraints were used in 
the refinement and this resulted in the tendency of  the 
phases to be improved, which was reflected by the R-free 
LB estimates. 

Fig. 4 shows the real and predicted mean phase errors 
separately for reflections included and not included in the 
refinement. It follows from these plots that the distribu- 
tions (5) and (8) produce correct estimates of  phase errors 
for both types of  reflection provided the proper values for 

a and/~ parameters are defined. It is w o r t h y  of  note, too, 
that the averaged values of  phase errors are nearly the 
same for both types of  reflection, that is, the phases of  the 
included reflections are being improved in the refinement 
process no better than the excluded ones. 

4.2. Experimental data 

The last set of  experiments was performed with the 
e x p e r i m e n t a l  F TM values. It should be noted that in this 
case we cannot perform as clear a comparison of the real 
and predicted phase errors as before since we do not 
know the exact phase values. In the previous tests, the 
'exact' phases ~0s ex and 'observed' moduli were calculated 
from the same model and we tried to judge the closeness 
of  ~0 m°d and tp~ x phases by means of calculating (15) and 
comparing it with (16) calculated with the same phases. 
Now we try to predict the deviation of  g~ns °d phases from 
some, actually unknown, phases tpts rue, but use as a check 
criterion (16), where other phases ~0~ x are used. The most 
we can do is to include in the calculation of ~0~ x phases all 
the structure atoms, including water molecules, to reduce 
the differences between ~0~ x and tpts ~ue. 
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Fig. 2. Changing of averaged values of LB-estimated ( A )  and real ( - O - )  phase errors during refinement. The arrows indicate the upper limit of the 
resolution zone for reflections included in the refinement. 
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Fig. 3. The averaged values of R-free LB-estimated and real phase 

errors after unrestrained and restrained refinements with simulated 
data. The control group contained 50% of the reflections. - O -  
unrestrained refinement, real errors; A unrestrained refinement, 
estimated errors; - 0 -  restrained refinement, real errors; • restrained 
refinement, estimated errors. 
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Fig. 4. The averaged values of R-free LB-estimated ( • )  and real ( - O - )  
phase errors after refinement with simulated data for different types 
of reflections: (a) the reflections included in the refinement; (b) the 
reflections of  the control group. The control group contained 50% of 
the reflections. 

The starting model was the same as before. It is worth 
noting that water molecules were not included in this 
model, so both the coordinate errors and the model 
incompleteness influenced the discrepancies between ~0 eX 
and tp m°d phases. In this refinement, the experimental 
F TM values were used and the phases ~o ex in (16) were 
calculated with the use of all the water atoms. The same 
refinement protocol has resulted in a model with R factor 
0.26 and mean coordinate error 0.40,4,. Fig. 5 shows the 
real and predicted phase errors for this case. 

Fig. 5(b) shows similar results when only 10% of the 
reflections were used as the control group during the 
refinement process. 

5. Discussion 

Generally speaking, there are two main reasons why LB 
estimates, which are adequate for models possessing 
independent coordinate errors, become invalid for ref'med 
models. The first is that the distributions (5) and (8) were 
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Fig. 5. The averaged values of R-free LB-estimated (A)  and real ( - O - )  

phase errors after refinement with experimental data: (a) 50% of 
reflections were included in the control group; (b) 10% of reflections 
were included in the control group. 
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derived under the assumption that coordinate shifts are 
independent, while for a refined model they are 
constrained by moduli of structure factors included in 
the refinement. Nevertheless, as follows from Fig. 2, 
these correlations of the shifts do not prevent us from 
obtaining the true expected phase-error values for the 
reflections not participating in the refinement. Further- 
more, Fig. 4 shows that (5) and (8) can represent 
correctly the expected phase errors for both types of 
reflection (i.e. included and excluded from the refine- 
ment) if the distribution parameters are chosen properly. 
So we may still use these distributions to estimate phase 
errors even for refined models, provided the appropriate 
values for a and/3 were found. 

The other possible reason why LB estimates failed 
when being applied to refined models is that we tried to 
determine a and /3 parameters from a badly defined 
likelihood function. The values F °bs and F m°d present in 
(14) were artificially brought close together for the 
reflections included in the refinement so the correspond- 
ing distributions (11) and (12) could not be considered as 
independent when calculating the likelihood. The exclu- 
sion of these terms from the calculations radically altered 
the quality of the error prediction. 

The R-free LB estimates reflect not only errors in 
calculated phases but the model quality too. So these 
estimates may be used as an additional (to R-free factor) 
tool for realistic judging of a model quality during the 
refinement process. 

where the weights wj are equal to 2 for acentric 
reflections and to 1 for centric ones. 

Let us introduce new variables u and v connected with 
a and/3 by 

u 2 = 1/ f l ,  v 2 = 012//3 (U >~ O, 12 E ~xl). (19) 

In this notation, the problem of maximization of the 
function (14) is reduced to maximization of the function 

Q(u,  v) = 2 In(u) - B u  2 - A v  2 

+ [1/(2n,~ + nc) ] ~ wj#j(uvbj), 
j= l  

(20) 

with respect to u and v values, where the functions #j(x) 
are defined as 

{ ln[lo(2X)] for acentric reflections, (21) 

lzj(x) = 2 ln[cosh(x)] for centric reflections. 

Necessary conditions for the maximum point are in this 
case 

OQ/Ou = 2 / u  - 2Bu  + 2 v A ( u v )  = 0, 

OQ/Ov = - 2Av  + 2 u A ( u v )  = 0, 
(22) 

where the function A(r) is defined as 

Z(r)  = [1/(2n a + nc)]~-~ wjbjnj(TJbj), 
j=l 

(23) 
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APPENDIX A 
Maximum-likelihood estimates for distribution 

parameters 

A 1. M a x i m i z a t i o n  p r o b l e m  

Let us consider the reflections belonging to a spherical 
layer in the reciprocal space and let nc and r/a be the 
numbers of centric and acentric reflections in this layer 
and n = n a + n c. Let Fe, j and Fm. j ( j  = 1 . . . . .  n) be the 
values of experimental and model structure-factor moduli 
for these reflections. We will use below the following 
notations: 

f 1 l ( 2 x ) / l o ( 2 x  ) for acentric reflections, 
Hi(x) (24) / tanh(x) for centric reflections. 

Calculating the sum and the difference of the first 
and second equations in (22) multiplied by u and v, 
respectively, we obtain 

1 + 2 u v A ( u v )  = A v  2 + B u  2 
(25) 

B u  2 - A v  2 = 1. 

From the last equation, it is possible to see that 

(Bu  2 + Av2) 2 = (Bu  2 - av2) z + 4 A B u 2 v  2 

= 1 + 4ABu2v 2, (26) 

bj = Fe, jFm.j /~j ,  (17) 

a = [1/(2na + nc)]~']~ 2 wf m./Ej, 
j=l 

B [1/(2n a + nc) ] ~ 2 = WjFe, j /g j ,  
j=l 

(18) n 
C = [ 1 / ( 2 n  a + nc)]~-~WjFrn.jFe,j/~j,  

j=! 

D [1/(2na + no)] )-~ 2 2 2 = wjFm, jFe , j /~ ) ,  
j=l 

so the first equation in (25) results in 

1 + 2 u v A ( u v )  = (1 + 4ABu2v2) 1/2. (27) 

Let us introduce now a new variable t connected to u 
and v as 

t = uv. (28) 

Equations (25) and (27) mean that at the maximum point 
t must satisfy the equation 

G(t )  - (1 + 4ABt2) u2 - 1 - 2 t A ( t )  = 0; (29) 
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and u and v are equal to 

v 2 = [(1 + 4ABt2) I/2 - 1]/2A, 

u 2 = [(1 + 4ABt2) 1/2 + 1]/2B. 
(30) 

The optimal c~ and/3 values can be calculated then as 

o t=  v/u,  f l =  1/u 2. (31) 

In the vicinity of  u = B -l/z,  v = O, 

Q(u, v) = ( -  lnB - 1) - 2B(u -- B-I/2) z 

+ (I-2/B)v 2 + . . . .  (35) 

so if ~ < 0 this point is the maximum point, but if 
> 0 this is a saddle point and the maximum is attained 

at a point corresponding to the nontrivial solution of  
G(t) = 0. 

A2. Mathematical analysis 

We exclude from the analysis the singular case when 
there exists a scale factor ). such that Fi °bs = 2F~ °~ for all 
the reflections, i.e. the model is ideal. 

The function G(t) is even, so we can consider it for 
t > 0 only. 

It is easy to see that G(t) - 0 always has the trivial 
solution t -- 0, i.e. v = O, u -- B -i/2 or a = 0, t5 = B. 

Using asymptotic formulae for the modified Bessel 
functions, we can obtain, for small values of  t, 

G(t) = - 2 ( D  - AB)t 2 + O(t 4) for  t ---> 0 (32) 

and, for large t, 

l im(1 / t )G( t )  = 2[(AB) !/2 - C ] .  (33) 
I---+ O0 

The value of  (AB) 1/2 - C is always positive owing to 
Cauchy inequality, so G(t) = 0 has at least one nontrivial 
solution if the value 

I2 = D - AB (34) 

is positive. 
It is possible to show, too, that the function Q(u, v) 

tends to - o ~  when the point (u, v) tends to infinity. So, 
the maximum value is attained at an inner point. 
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The Analytical Calculation of Absorption in Multifaceted Crystals 

BY R. C. CLARK 

Department  o f  Mathematical  Sciences, University o f  Aberdeen, Aberdeen AB9 2TY, Scotland 

AND J. S. REID 

School o f  Physics, University o f  Aberdeen, Aberdeen AB9 2UE, Scotland 

(Received 20 April 1995; accepted 5 June 1995) 

Abstract 

The exact analytic method of  evaluating the absorption 
during scattering in multifaceted convex crystals is de- 
veloped in a way that permits efficient computation. 
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A fast and accurate algorithm is given for finding the 
Howells polyhedra whose determination is fundamental  
to the analytic method. The algorithm allows for the 
evaluation of  cases when the sample is only partly 
illuminated, can be adapted to more general situations 
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